A (very) short selection of Assis's work:

  1. A. K. T. Assis, "On Mach's principle," Foundations of Physics Letters, Vol. 2, pp. 301-318 (1989). Abstract: We propose the postulate that the resultant force acting on any body is zero. With this postulate and with a Weber law for gravitation, we obtain equations of motion and conclude that all inertial forces are due to gravitational interaction with other bodies in the universe, as suggested by Mach. We then obtain the same value for the advance of the perihelion of the planets as is given by general relativity. All this is accomplished in a strictly relational theory. Finally, we relate these points to topical questions of electrodynamics raised by the experimental studies of Graneau and Pappas.
  2. A. K. T. Assis, "On Hubble's law of redshifts, Olbers' paradox and the cosmic background radiation," Apeiron, Vol. 12, pp. 10-16 (1992). Abstract: We utilize the principle of conservation of energy in a model which explains the cosmological redshift, Olbers' paradox and the cosmic background radiation. The model is based on a hypothesis of absorption and emission of light by galactic and intergalactic matter, and a mean temperature of matter in the universe compatible with the background radiation. We also discuss the early works of Regener and Nernst related to these topics. Lastly we derive some known scaling laws for galaxies, i.e., luminosity to mass and luminosity to area, which had not been well understood up to now. All of this is accomplished supposing a boundless, stationary universe that is homogeneous on the large scale.
  3. A. K. T. Assis, "On the absorption of gravity," Apeiron, Vol. 13, pp. 3-11 (1992). Abstract: We proposed a modified Weber's potential for gravitation that takes into account the influence of intervening matter. Then we obtain equations of motion similar to Newton's first and second laws, and derive the proportionality between inertial and gravitational masses. We conclude that the gravitational absorprtion coefficient should be proportional to the square root of the density of the intervening mediu, and that for solids its value is approxiamtely 10^{-11} m^{-1}. All of this is accomplished supposing a limitless, homogeneous and stationary universe.
  4. A. K. T. Assis, "Deriving gravitation from electromagnetism," Canadian Journal of Physics, Vol. 70, pp. 330-340 (1992). Abstract: We present a generalized Weber force law for electromagnetism including terms of fourth and higher orders in v/c. We show that these extra terms yield an attractive force between two neutral dipoles in which the negative charges oscillate around the positions of equilibrium. This attractive force can be interpreted as the usual Newtonian gravitational force as it is of the correct order of magnitude, is along the line joining the dipoles, follows Newton's action and reaction law, and falls off as the inverse square of the distance.
  5. A. K. T. Assis, "A steady-state cosmology," In: Progress in New Cosmologies: Beyond the Big Bang, H. C. Arp, C. R. Keys and K. Rudnicki (editors), (Plenum Press, New York, 1993), pp. 153-167. Abstract: We analyze a steady-state cosmology based on a boundless universe which has always existed and which is homogeneous on the very large scale. As this is a stationary model without expansion, it does not require a continous creation of matter, in contrast to the steady-state model of Bondi, Hoyle and Gold. We study the problems and properties of this model relating to inertia and gravitation (Mach's principle and the origin of inertia, the Seeliger-Neumann term), the cosmological redshift (alternatives to the Doppler interpretation of Hubble's law, the Finlay-Freundlich model), and the cosmic background radiation (predictions of a background temperature around 3K previous to the experimental discovery by Penzias and Wilson in 1965). Some observational tests of this general model are outlined.
  6. A. K. T. Assis and M. C. D. Neves, "History of the 2.7 K temperature prior to Penzias and Wilson," Apeiron, Vol. 2, pp. 79-84 (1995). Abstract: We present the history of estimates of the temperature of intergalactic space. We begin with the works of Guillaume and Eddington on the temperature of interstellar space due to starlight belonging to our Milky Way galaxy. Then we discuss works relating to cosmic radiation, concentrating on Regener and Nernst. We also discuss Finlay-Freunlich's and Max Born's important research on this topic. Finally, we present the work of Gamow and collaborators. We show that the models based on a universe in dynamical equilibrium without expansion predicted the 2.7K temperature prior to and better than the models based on the big bang.
  7. A. K. T. Assis and P. Graneau, "The reality of Newtonian forces of inertia," Hadronic Journal, Vol. 18, pp. 271-289 (1995). Abstract: We present a historical analysis of the inertial forces and of the theories developed to explain the origin of inertia. Then we introduce the principle of dynamical equilibrium and its relevance to mechanics. We analyse the Mach-Weber model which implements MMach's principle with Newtonian simultaneous interactions and we argue for the reality of the inertial forces, that is: the force of free fall (-ma), the centrifugal force and the Coriolis force. Lastly we present an experimental consequence of the Mach-Weber model which differs from Newton's law of gravitation.
  8. A. K. T. Assis, "Weber's law and Mach's principle," In: Mach's Principle: From Newton's Bucket to Quantum Gravity, H. Pfister and J. B. Barbour (eds.), (Birkhäuser, Boston, 1995), pp. 159-171. Subject: We discuss the implementation of Mach's principle based on Weber's law applied to gravitation.
  9. A. K. T. Assis and M. C. D. Neves, "The redshift revisited," Astrophysics and Space Science, Vol. 227, pp. 13-24 (1995). This paper was also published in: Plasma Astrophysics and Cosmology, A. L. Peratt (ed.), (Kluwer Academic Publishers, Dordrecht, 1995), pp. 13-24. Abstract: We analyse the history of modern comsmology based on the redshift phenomenon and on the cosmic background radiation (CBR). We show the models of different authors for the interpretation of the redshift and how the tired light models predicted the correct value of 2.7K temperature previous to Gamow and collaborators.
  10. A. K. T. Assis and P. Graneau, "Nonlocal forces of inertia in cosmology," Foundations of Physics, Vol. 26, pp. 271-283 (1996). Abstract: This paper reviews the origin of inertia according to Mach's principle and Weber's law of gravitation. The resulting theory is based on simultaneous nonlocal gravitational interactions between particles in the solar system and others in the remote universe beyond the Milky Way galaxy. It explains the precession of the perihelion of Mercury. A most important implication of the Mach-Weber theory of the force of inertia is the necessity of a large amount of uniformly distributed matter in the galactic universe. This matter could be the source of the cosmic background radiation. Nonlocal inertia forces are compatible with a static universe and also with an expanding universe but the latter would demand slow changes in the mass of particles and the gravitational constant.